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Analytic example of a free energy functional

Christian Tutschka and Gerhard Kahl
Institut für Theoretische Physik and Center for Computational Materials Science, Technische Universita¨t Wien,

Wiedner Hauptstraße 8–10, A-1040 Wien, Austria
~Received 12 April 2000!

We use the ideas of Percus for the construction of classical density functionals for two model interactions:
simple hard spheres and adhesive hard spheres~AHSs!. The required input, the properties of theuniformfluid,
is taken from the analytic mean spherical solution for these two systems. For hard spheres we derive—via a
bilinear decomposition of the direct correlation functions—a set of basis functions, which is the same as the
one presented by Rosenfeld in his fundamental measure theory framework. For AHSs additional basis func-
tions have to be considered to ensure the bilinear decomposition of the direct correlation functions; we present
an expression for the free energy functional for the one-component case.

PACS number~s!: 61.20.Gy, 71.15.Mb, 05.20.2y
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I. INTRODUCTION

Classical density functional theory~DFT! is a modern tool
to study the structure and thermodynamic properties of n
uniform fluids and related systems~for an excellent overview
see, for instance,@1#!. The list of applications of classica
DFT in this field comprises topics such as freezing pheno
ena, nucleation, structure and thermodynamics of interfa
and surfaces, or wetting problems@2#. The framework of
DFT can be considered as a reformulation of statistical m
chanics in the language of generating functionals. Its cen
issue is a theorem@3#, that states that the Helmholtz fre
energyF@r# of any system with a given stable interactio
potential, at a given temperatureT (b51/kBT) and external
potential U(r ), is uniquely minimized by the equilibrium
one-particle densityr(r )5r0(r ). Furthermore, withbF@r#

5bF̄@r#1*drr(r )bU(r ), F̄@r# ~the intrinsic free energy!
is a generating functional for the direct correlation functi
c(2)(r ,r 8),

d2bF̄

dr~r !dr~r 8!
5

d~r2r 8!

r~r !
2c(2)~r ,r 8!. ~1!

Of course, in theuniform limit @i.e., r(r )→r# the properties
of the corresponding uniform system have to be recover

Practical applications require the explicit form of the co
responding energy functional. However, this information
accessible only in very rare cases~most of them being one
dimensional systems!; one therefore has to resort to approx
mate schemes. Again, it is not possible to present a comp
list of approximate approaches that have been propose
the literature; we therefore refer the reader to@1#. Despite the
success of these approaches in a wide range of applicat
considerable effort is nonetheless devoted to gaining n
insight into thegeneralstructure of density functionals vi
exactly or semianalytically solvable systems. Two of the
concepts are pointed out in particular: the fundamental m
sure theory~FMT; proposed by Rosenfeld in@4# and elabo-
rated in many subsequent articles! and an approach followed
for a long time by Percus and other authors~for an overview
PRE 621063-651X/2000/62~3!/3640~8!/$15.00
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see, for example,@5#!. These frameworks have mainly bee
used for simple systems; already for such systems—altho
their interactions are rather simple—the formalism turns
to be sometimes ‘‘unduly complicated’’@6#.

The FMT, proposed originally by Rosenfeld@4# and re-
fined in subsequent work~summarized, e.g., in@7,8#! intro-
duced a new concept for the construction of functionals.
stead of using a good knowledge of the bulk properties of
system as an input~as is often done in approximat
schemes!, the construction of the density functional~DF! is
based on the geometric features of the particles. In the o
nal work @4# the concept was applied to a mixture of ha
spheres, reproducing, indeed, the analytic expressions o
bulk direct correlation functions of the Percus-Yevick~PY!
equation@9,10#. From this functional, thermodynamic an
structural properties of the uniform fluid can be derive
Among several hard-core systems~even nonspherical ones
such as cubes@11,12#!, there is only one ‘‘soft’’ system
where the framework has been applied@13#.

The other strategy is~mainly! due to Percus, who ha
followed this route now for more than 20 years; contrib
tions due to other authors in this direction are quoted in@5#.
Essentially, it consists in the development of mathemat
models of the free energy of a nonuniform fluid@14,5# with
the bulk direct correlation functions as the only specific
put, whereas the general structure of the free energy an
~called the format! is taken from~mostly! one-dimensional
exactly solved model systems@5,15–17#. The hope behind
this approach is that these ‘‘exactly solvable model syste
. . . might serve as guides’’@15# for more complex, realistic
systems. The mathematical model we are going to de
below and illustrate for a system with attractive potenti
was proposed in@14,5#. As in the FMT this approach is a
weighted-density type DFT: the density profile@one-particle
densityr(r )# is smoothed via a convolution with an appr
priate set of weight~basis! functions. These weight function
have— as in the FMT framework—a range of half the ran
of the interaction.

In this contribution we first of all show that for simpl
hard spheres we can reproduce Rosenfeld’s original FMT
of basis functions~which—as in the Percus approach—
3640 ©2000 The American Physical Society
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PRE 62 3641ANALYTIC EXAMPLE OF A FREE ENERGY FUNCTIONAL
representsonly onepossible set of functions! and the corre-
sponding energy density@5#. We then proceed to the mos
simple~and convenient! extension of hard spheres by inclu
ing some attraction, leading us to adhesive hard sphere
system introduced by Baxter@18#. Here, the direct correla
tion functions are known analytically for both the PY equ
tion and the mean spherical model~MSM!. We are able to
present a set of basis functions~which we obtain from a
decomposition of the direct correlation function in th
MSM!: with respect to the hard sphere case, additional b
functions have to be included. Further, it is inde
possible—due to a simple density dependence of the co
lation functions—to write down a closed expression for t
energy density. We have also tried to generalize these re
to theN-component case: this step fails due to a violation
the integrability condition of the compressibility relatio
i.e., some inconsistency of the MSM.

The paper is organized as follows. In the next section
present the mathematical model of the density functional
in Sec. III the decomposition of the direct correlation fun
tions in terms of the basis functions and the reconstructio
the density functional for the two model interactions me
tioned above. We then discuss in Sec. IV how this ma
ematical model of a generating functional can be solved
those systems where analytic solutions of the structure fu
tions are no longer available. The paper is closed with c
cluding remarks.

II. THE FORMAT

We start from the general ansatz~format! for the intrinsic
free energy functionalF̄@r# @14,5#

bF@r#5bF̄@r#1E drUb~r !r~r ! ,

bF̄@r#5E drr~r !@ ln r~r !21#1E drF~$ra%!~r !,

~2!

wherer(r ) is the nonuniform one-particle density, and t
density dependence of the excess free energy densityF oc-
curs locally via the nonlocalra(r ), a being from a finite set
of indices@5#; the ra(r ) are given by

ra~r !5E dr 8 ba~r2r 8!r~r 8!5@ba ^ r#~r !, ~3!

and the basis functionsba(r ) have half the range of the
interaction@5,14–17#. The basic physical restriction for thi
format is that the local structure of the DF is valid only f
short-range interactions; this restriction stems from res
obtained for exactly solvable one-dimensional systems~re-
striction to nearest-neighbor interactions! @15–17,5#.

Following Percus we distinguish two types of basis fun
tions $ba%5$ba8 ,ba9%: the scalars, where

E drba8~r !51 ~4!
, a

-
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and the vector components with

E drba9~r !50. ~5!

We will now construct the generating functional in
three-step procedure. The first step is the determination
the basis functions. This is most readily done via the bilin
decomposition of the Boltzmann factore(r )5exp@2bC(r)#
@whereC(r ) is the interaction potential#. This step is moti-
vated by the fact thate(r ) represents the low-density limit o
the free energy. One should also point out that this ste
used in the FMT to fix the basis functions@4#.

In the second step the direct correlation function is o
tained from the functionalF̄@r# via a double functional de-
rivative using Eq.~1!. Using Eqs.~2! and ~3! we find in the
uniform limit

2c(2)~r ,r 8!52c(2)~ ur2r 8u!

5(
ab

E dr 9ba~r 92r !bb~r 92r 8!

3Fa,b~$r%!r(r )5r ~6!

which in Fourier space~a caret denotes the Fourier tran
form! reads

2 ĉ(2)~q!5(
ab

b̂a~q!b̂b~q!Fa,b~$r%!ur(r )5r . ~7!

Here we require knowledge of the direct correlation functi
and we have to verify that the basis functions chosen in
first step are indeed able to decompose the direct correla
functions for any density. There are a few model system
where this function can be determined analytically~which
does not guarantee that the generating functional can be
ten down in a closed analytic expression!. In this contribu-
tion we restrict ourselves to two such analytically solvab
systems: hard spheres~HSs; in the PY equation!, and their
mathematically simplest extension, adhesive hard sph
~AHSs; in the mean spherical model!. In the general case th
correlation functions have to be determined via one of
accurate liquid state theories@19,20# known in the literature.
The decomposition ofc(2)(r ,r 8) in terms of the basis func
tions yields the coefficientsFa,b , i.e., the partial derivatives
of F with respect tora andrb .

In the third step,F and the generating functionalF@r#
are finally obtained via a double integration with respect
the bulk density~and by including some further, nontrivia
technical assumptions!. The argument dependence ofF on
$ra% fixes the local character of this function for any dens
~uniform or nonuniform!.

Of course, the free energy of the uniform system,F, is
reproduced whenr(r )5r, i.e.,

bF̄@r~r !#ur5bF. ~8!
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III. THE SYSTEMS

A. Hard spheres

The simplest model system in three dimensions that
be treated analytically is anN-component mixture of HSs
characterized by diametersdii 5di , a set of concentration
ci , and a packing fractionh5(p/6)r( icidi

3 , i 51, . . . ,N;
the r i5rci are the partial densities. Further,di j 5

1
2 (di

1dj ), si j 5
1
2 (di2dj ), and we assume thatsji .0. For the

PY equation~or MSM! closed analytic expressions are ava
able for the direct correlation functionci j

(2)(r )5ci j
(2)(ur 8

2r 9u) @9,10#:
tio
to
n

2ci j
(2)~r !5x (3)DVi j ~r !1x (2)DSi j ~r !1x (1)DRi j ~r !

1x~0!Q~di j 2r !. ~9!

This formulation was proposed by Rosenfeld@21,4# and is a
geometric interpretation of the direct correlation functio
DVi j (r ) andDSi j (r ) are the overlap volume and the overla
surface of two spheres separated by a distancer, andDRi j (r )
is the mean radius of the spherocone;Q(r ) is the usual
Heaviside step function. For completeness the explicit
pressions for the functionsDVi j (r ), DSi j (r ), and DRi j (r )
are given:
DVi j ~r !ª5
pdi

3

6
, r P~0,sji !

p

6r S 2
3~dj

22di
2!2

32
1

dj
31di

3

2
r 2

3~dj
21di

2!

4
r 21

1

2
r 4D , r P@sji ,di j #

0, r P~di j ,`!,

~10!

DSi j ~r !ª5
pdi

2 , r P~0,sji !

p

r H 2
di1dj

2 S di2dj

2 D 2

12F S di

2 D 2

1S dj

2 D 2G r 2
di1dj

2
r 2J , r P@sji ,di j #

0, r P~di j ,`!,

~11!

DRi j ~r !ª5
di

2
, r P~0,sji !

1

r F2
1

4 S di2dj

2 D 2

1
di1dj

4
r 2

1

4
r 2G , r P@sji ,di j #

0, r P~di j ,`!.

~12!
n.
The three-step procedure outlined in the preceding sec
can now be applied: decomposition of the Boltzmann fac
leads to a set of basis functions~the sa

(di ) are henceforward

the scalar, while theta
(di ) are the vector basis functions!

s3
(di )~r !5QS di

2
2r D , t2

(di )~r !5“s3
(di )~r !,

s2
(di )~r !5ut2

(di )~r !u ~13!

and

s1
(di )~r !5

1

4pdi /2
s2

(di )~r !, t1
(di )~r !5

1

4pdi /2
t2

(di )~r !,

s0
(di )~r !5

1

4p~di /2!2
s2

(di )~r !. ~14!

Defining the set$ra(r )%5$sa8(r ),ta9(r )%,
n
r sa8~r !5(

i 51

N

~s
a8

(di )
^ r i !~r !, a850, . . . ,3,

ta9~r !5(
i 51

N

~t
a9

(di )
^ r i !~r !, a951,2, ~15!

we can extract the partial derivativesFa,b . F is then deter-
mined via integration ofFa,b ~up to integration constants!
and is found to be~see also@4,5#!

F~$ra%!52s0ln~12s3!1
s1s22t1•t2

12s3

1

~1/8p!s2S 1

3
s2

22t2•t2D
~12s3!2

. ~16!

The basis functions in Eqs.~13! and~14! are exactly those
that were proposed by Rosenfeld@4# in his geometrically
motivated decomposition of the direct correlation functio
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However, it should be pointed out that Rosenfeld’s appro
is from the conceptual point of view completely differe
from the present one: Rosenfeld starts from the decomp
tion of the Boltzmann factor and determines the functio
based on a differential equation, originally proposed fo
uniform mixture of hard spheres in@22#; however, the exten-
sion to systems with attractive tails is impossible. The dir
correlation functions that come out of the formalism are
actly those that are obtained from the PY equation fo
mixture of HSs@9#. This idea has lead to the very fruitfu
concept of fundamental measure theory which has been
plied in many fields of liquid state physics~for an overview
see, for example,@7,8#!. As, for instance, discussed in@5#
several equivalent sets of basis functions are possible s
tions to the decomposition of the direct correlation functio
s

h

si-
l

a

t
-
a

p-

lu-
.

A further equivalent set of functions has been proposed
Kierlik and Rosinberg@23#: there, the basis functions ar
purely scalar ones~this possibility was already predicted b
Percus@14,5#!, but contain, on the other hand, higher-ord
derivatives of thed function. The equivalence of the tw
parametrizations has been shown explicitly in@24#.

B. Adhesive hard spheres

The most simple extension of HSs is to add an attrac
potential to the hard core. This can be done most con
niently in terms of an adhesive potential, introduced by Ba
ter @18# as a special limiting case of a square-well system;
consider anN-component mixture of AHSs, their interactio
being given by
ein-
ly
bC i j ~r !5 lim
e→0

H `, r P@0,di j !

2Q~r 2di j !lnS g i j di j

e DQ~di j 1e2r !, r P@di j ,`!.
~17!

We use the same symbols as in the HS case. The parametersg i j characterize the stickiness of the spheres. The Ornst
Zernike ~OZ! equations, which relate the direct@ci j

(2)(r )# and the total@hi j
(2)(r )# correlation functions, are most convenient

solved by a Wiener-Hopf~Wertheim-Baxter! factorization procedure@25,10#. The factor functionsqi j (r ) that are introduced in
this framework are related to theci j

(2)(r ) via

rci j
(2)~r !5H 2qi j8 ~r !12p(

k51

N

rkE
0

`

qki~ t !qk j8 ~r 1t !dt, r P~0,di j #

0, r P~di j ,`!.

~18!
th
led

as
e

One finds for theqi j (r ) @26#

qi j ~r !5Q~r 2si j !S 1

2
ai~r 22di j

2 !1bi~r 2di j !1l i j di j
2 D

3Q~di j 2r ! ~19!

with yet undeterminedl i j and the following parameter
~summations run here and in the following from 1 toN):

ai5
1212Xi

12z3
1

diz2

2~12z3!2
,

di

12z3
5~diai12bi !,

~20!

Xi5
p

6 (
l

r lG i l dl , G i j 5g i j di j
2 , ~21!
z05(
l

r l , z15(
l

r l~dl /2!5
1

2 (
l

r ldl ,

z25(
l

r l@4p~dl /2!2#5p(
l

r ldl
2 ,

z35(
l

r l@~4p/3!~dl /2!3#5~p/6!(
l

r ldl
3 . ~22!

The ~factorized! OZ equations have to be solved along wi
a closure relation. In the PY case we obtain a set of coup
quadratic equations that has to be solved numerically@26#:

l i j di j 5g i j S aidi j 1bi12p(
k

rklk jdk j
2 qik~sik! D . ~23!

The l i j are explicitly density dependent; for this reason—
will be explained later—we discard in this contribution th
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PY solution. The MSM, on the other hand, leads to the v
simple and density-independent solution@27#

l i j 5g i j . ~24!
r
.,
tio
d
o

e
to
io

s

y For the decomposition of the direct correlation functio
we use again theDVi j (r ), DSi j (r ), andDRi j (r ) introduced
in Sec. III A. Using Eqs.~18!–~22! we find the following
expressions for the direct correlation functions~see also
@28#!:
2ci j
(2)~r !5DVi j ~r !(

k
rkak

21
1

2
DSi j ~r !(

k
rkak~dkak12bk!1pDRi j ~r !(

k
rk~dkak12bk!

2

1
1

12z3
Q~di j 2r !2g i j di j d~r 2di j !

1

¦

2
12Xi

12z3
22p(

k
rkakGkidi , r P~0,sji !,

2
6Xi16Xj

12z3
1

6si j ~Xi2Xj !

12z3

1

r
1p(

k
rkak~Gki1Gk j!r

2p(
k

rkak~Gkidi1Gk jdj !1p(
k

rkakdi j si j ~Gki2Gk j!
1

r

12p(
k

rkGkiGk j

1

r
, r P@sji ,di j #,

0, r P~di j ,`!.

~25!
ect

sis

t

As in the HS case, theci j
(2)(r ) of AHSs of the PY equa-

tions and of the MSM are limited to the range of the inte
action: forr P@0,di j # we recover typical hard core terms, i.e
terms such as those that build up the HS direct correla
functions. In addition, we encounter terms that are cause
the adhesiveness of the interaction and have to be dec
posed into convolutions of~eventually new! basis functions:
those terms are proportional tor, 1/r , andd(r 2d).

Again, we execute the three-step procedure outlin
above. The decomposition of the Boltzmann factor leads
new set of basis functions: indeed, the set of basis funct
used for HSs is no longer sufficient. By introducingc0

(di )(r ),

c3
(di )(r ), and t0

(di )(r ) we extend the set of basis function

$s
a8

(di ) ,t
a9

(di )% used for HSs to the following set:

s3
(di )~r !5QS di

2
2r D , t2

(di )~r !5“s3
(di )~r !,

s2
(di )~r !5ut2

(di )~r !u, t0
(di )~r !5

1

4pdi /2
“s2

(di )~r !,

c0
(di )~r !5ut0

(di )~r !u, ~26!

and
-

n
by
m-

d
a

ns

c3
(di )~r !5

di

6
s2

(di )~r !,

s1
(di )~r !5

1

4pdi /2
s2

(di )~r !, t1
(di )~r !5

1

4pdi /2
t2

(di )~r !.

s0
(di )~r !5

1

4p~di /2!2
s2

(di )~r !. ~27!

We can now proceed to the decomposition of the dir
correlation functions~6!; this task is most readily done in
Fourier space. Introducing the Fourier transforms of the ba
functions, i.e.,F@s3

(di )#(q)5ŝ3
(di )(q), etc., we find the fol-

lowing bilinear decompositions of ther-dependent terms tha
build up the direct correlation function according to Eq.~25!:

F @DVi j #~q!5ŝ3
(di )~q!ŝ3

(dj )~q!,

F @DSi j #~q!5ŝ3
(di )~q!ŝ2

(dj )~q!1ŝ2
(di )~q!ŝ3

(dj )~q!,

F @DRi j #~q!5ŝ3
(di )~q!ŝ1

(dj )~q!1ŝ1
(di )~q!ŝ3

(dj )~q!

1
1

4p
@ŝ2

(di )~q!ŝ2
(dj )~q!1 t̂2

(di )~q!• t̂2
(dj )~q!#,
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F @Q~di j 2r !#~q!5ŝ3
(di )~q!ŝ0

(dj )~q!1ŝ0
(di )~q!ŝ3

(dj )~q!

1ŝ1
(di )~q!ŝ2

(dj )~q!1ŝ2
(di )~q!ŝ1

(dj )~q!

1 t̂1
(di )~q!• t̂2

(dj )~q!1 t̂2
(di )~q!• t̂1

(dj )~q!,

~28!

F @d~r 2di j !#~q!58pŝ1
(di )~q!ŝ1

(dj )~q!1ĉ0
(di )~q!ŝ2

(dj )~q!

1ŝ2
(di )~q!ĉ0

(dj )~q!1 t̂0
(di )~q!• t̂2

(dj )~q!

1 t̂2
(di )~q!• t̂0

(dj )~q!,

F @Q~r 2sji !rQ~di j 2r !#~q!56@ĉ3
(di )~q!ŝ1

(dj )~q!

1ŝ1
(di )~q!ĉ3

(dj )~q!#

1
1

p
t̂2

(di )~q!• t̂2
(dj )~q!,
tr

ar
ct

ith
e

ul

i

i-
t
hi

ol
i

F FQ~r 2sji !
1

r
Q~di j 2r !G~q!58pŝ1

(di )~q!ŝ1
(dj )~q!.

Now the coefficientsFa,b($r%) are determined from Eqs
~25! and ~28!. The decomposition of the direct correlatio
functions fixes via Eq.~6! theFa,b ; the determination ofF
can now be done via integration ofFa,b . This integration
can be performed in a completely analytic way for the MS
where the coefficientsl i j are density independent. The situ
ation is somewhat more complicated for the PY equati
here thel i j are density dependent andF can only be deter-
mined via a numerical double integration. Since the pres
contribution seeks only to demonstrate the possibility of
extension of Percus’ idea to systems beyond simple HSs
restrict ourselves to the MSM case.

We start with discussion of the one-component caseN
51). We are looking forF that reproduces in the uniform
case the MSM expression for the direct correlation functi
Separation of variables~as in the exactly solvable one
dimensional cases@15,16,5,17#! yields F uniquelyup to in-
tegration constants which are determined via a lowest-o
expansion of the free energy@29#. F is then given by
F~$ra%!52s0ln~12s3!1
s1s22t1•t2

12s3
1

~1/8p!s2S 1

3
s2

22t2•t2D
~12s3!2

22gFs1S 4p
d

2
s1D1

d

2
c0s22

d

2
t0•t2G

124g2s0S s0

pd3

6 D 2

212g~s1s22t1•t2!
s3

12s3
248gs0S ~113g!~s31 ln@12s3# !1

3

2
gs3

2D
1

48g

pd3/6
F ~116g!S 2s31

1

2
s3

22~12s3!ln~12s3! D1gs3
3G . ~29!
ly
dis-
e-
Ss

ity
lex
this
em
yti-
ri-

ca-
pli-
e in
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od-
,

The first line is again the expression for the pure HS con
bution @cf. Eqs.~15! and ~16! with N51#; the other contri-
butions take into account the stickiness. It is straightforw
~but tedious! to show thatF indeed reproduces the dire
correlation functions and the free energy.

Of course, it is possible to proceed in a similar way w
the PY solution of the direct correlation function. Now th
coefficients of the bilinear decomposition ofc(2)(r ), the
](]F/]rb)]ra , are density dependent; henceF has to be
determined via a double integration with respect to the b
density.

The generalization of this procedure to theN-component
case can certainly not be done in the MSM of AHSs. This
due to an inconsistency of the MSM for AHSs~which obvi-
ously has not been realized up to now!: the partial deriva-
tives of the pressureP with respect to the densitiesr i , i.e.,
b(]P)/(]r i), which can be calculated directly from the d
rect correlation functions@9#, do not represent a gradien
field, i.e., the equation of state obtained by integration of t
quantity is path dependent.

To conclude, two notes have to be made. First, the s
tion of the OZ equations via the Baxter factorization route
i-

d

k

s

s

u-
s

equivalent to the direct solution of the OZ equations on
under certain conditions, which have, for instance, been
cussed in@10,30#. Second, these conditions lead in the on
component case to the restriction that the MSM for AH
has no solution for all densities forg.gc5(A312)/6
;0.622@31#.

IV. EXTENSIONS AND APPLICATIONS

We start this section with an outlook on the applicabil
of this method to other, perhaps more realistic, and comp
systems. We are quite sure—although we cannot prove
rigorously—that there is no further three-dimensional syst
where the density functional can be constructed fully anal
cally following the framework we have used in this cont
bution.

However, this should not discourage us from the appli
tion of Percus’ ideas. We therefore outline a possible ap
cation to more realistic systems that we intend to elaborat
the near future. The basis for our optimism is the fact that
direct correlation functions of any ‘‘simple’’ liquid can
nowadays be determined with arbitrary accuracy using m
ern concepts of liquid state theory~see, for instance
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@19,20#!. Again, we proceed in the three-step sequence
lined in the preceding section. First, we determine the se
basis functions$ba8 ,ba9%: the fact that for hard core inter
actions these functions are by now well established~both via
Rosenfeld’s FMT approach as well as by Percus’ conce!
suggests that we concentrate on such systems. The addit
repulsive ~or attractive! tail should then be restricted t
simple analytical forms~such as square wells, square sho
ders, or related systems! where the decomposition of th
Boltzmann factor in terms of additional basis functions
still within reach. Second, we make a bilinear decomposit
of the direct correlation functions and determine thus
matrix of coefficients](]F/]rb)]ra . Finally, third, we cal-
culateF via a double integration with respect to density.
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Density functionals are not used only to describe prop
ties of nonuniform systems. A third functional derivative
the free energy with respect to density~and taking the limit
of a uniform density! gives, for instance, the three-partic
direct correlation functionc(3) @1#. This fact was, for in-
stance, one of the first applications of Rosenfeld’s FMT d
sity functional proposed for HSs and led to quite a satisf
tory result in comparison with computer simulation da
@32,33#. The fact that we have constructed a density fun
tional for AHSs allows us to present an expression for
three-particle direct correlation functions for such a syste
The threefold functional derivative of the functional and t
uniform limit can be transformed to threefold partial deriv
tives of the energy densityF, and this leads to the following
result for the correlation functions inq space,c(3)(q1 ,q2):
2 ĉ(3)~q1 ,q2!54p2d6g2$ŝ0
(d)ŝ0

(d)ŝ0
(d)%~q1 ,q2!1

1148g~116gz323gz3
2!

~12z3!2
$ŝ0

(d)ŝ3
(d)ŝ3

(d)%~q1 ,q2!1
1212g

~12z3!2
$~ ŝ1

(d)ŝ2
(d)

2 t̂1
(d)
• t̂2

(d)!ŝ3
(d)%~q1 ,q2!1

1

4p~12z3!2
$ŝ2

(d)~ ŝ2
(d)ŝ2

(d)2 t̂2
(d)
• t̂2

(d)!%~q1 ,q2!1
2z2~1212g!

~12z3!3
$ŝ1

(d)ŝ3
(d)ŝ3

(d)%

3~q1 ,q2!1
z2

2p~12z3!3
$~ ŝ2

(d)ŝ2
(d)2 t̂2

(d)
• t̂2

(d)!ŝ3
(d)%~q1 ,q2!1S 3z2

2

4p~12z3!4
1

2z1~1212g!

~12z3!3 D
3$ŝ2

(d)ŝ3
(d)ŝ3

(d)%~q1 ,q2!1S z2
3

p~12z3!5
1

6z1z2~1212g!

~12z3!4
1

2z0@1148g~113g!#

~12z3!3

2
288g~1112gz326gz3

2!

pd3~12z3!2 D $ŝ3
(d)ŝ3

(d)ŝ3
(d)%~q1 ,q2!, ~30!

where we have used the following shorthand notation for permutations

$s1s2s3%~x1 ,x2!5s1~x1!s2~x2!s3~2x12x2!1s1~2x12x2!s2~x1!s3~x2!1s1~x2!s2~2x12x2!s3~x1!

1s1~2x12x2!s2~x2!s3~x1!1s1~x1!s2~2x12x2!s3~x2!1s1~x2!s2~x1!s3~2x12x2!. ~31!
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V. CONCLUSIONS

Based on investigations of one-dimensional, exactly so
able problems that were performed during recent deca
Percus and co-workers have proposed a general mathe
cal model of density functionals that may be solved fro
knowledge of the uniform direct correlation functions of t
system considered. To demonstrate its applicability for s
tems other than hard spheres we have treated the m
spherical model for adhesive hard spheres. We have sh
that it is indeed possible to construct from the uniform dir
correlation functions a closed analytic form for the gener
ing functional, that reproduces—as requested—the struct
and thermodynamic properties of the uniform system. To
end the set of basis functions~that are used in this weighted
density type functional! has to be extended with respect
-
s,

ati-

s-
an

wn
t
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ral
is

the case of simple hard spheres. The basic relations of c
sical density functional theory allow us to write down
closed expression for the three-particle direct correlat
function. We conclude by giving an outline of how th
mathematical model can be solved for more realistic s
tems.
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