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Analytic example of a free energy functional
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We use the ideas of Percus for the construction of classical density functionals for two model interactions:
simple hard spheres and adhesive hard sph@tdSs). The required input, the properties of theiformfluid,
is taken from the analytic mean spherical solution for these two systems. For hard spheres we derive—via a
bilinear decomposition of the direct correlation functions—a set of basis functions, which is the same as the
one presented by Rosenfeld in his fundamental measure theory framework. For AHSs additional basis func-
tions have to be considered to ensure the bilinear decomposition of the direct correlation functions; we present
an expression for the free energy functional for the one-component case.

PACS numbgs): 61.20.Gy, 71.15.Mb, 05.26y

I. INTRODUCTION see, for exampldg,5]). These frameworks have mainly been

Classical density functional theofpFT) is a modern tool used for simple systems; already for such systems—although
their interactions are rather simple—the formalism turns out

to study the structure and thermodynamic properties of non- X " . ,
uniform fluids and related systerffer an excellent overview to be sometimes “unduly f:qmpllcatec[G].

see, for instance[1]). The list of applications of classical . 1"€ FMT, proposed originally by Rosenfeld] and re-
DFT in this field comprises topics such as freezing phenom{ineéd in subsequent worksummarized, e.g., ifi7,8]) intro-
ena, nucleation, structure and thermodynamics of interfaceduced @ new concept for the construction of functionals. In-
and surfaces, or wetting problemig]. The framework of stead of using a good knoyvledge of the bulk propertlgs of the
DFT can be considered as a reformulation of statistical meSYStem a@s an inputas is often done in approximate
chanics in the language of generating functionals. Its centraic"€mes the construction of the density function@F) is
issue is a theorer], that states that the Helmholtz free based on the geometric features of the particles. In the origi-

energyF[p] of any system with a given stable interaction nal work [4] the C(_)nce_pt was applied to_a mixture_ of hard
potential, at a given temperatufe (8=1/kgT) and external sphere;, reproducmg, mdee@, the analytic expressions of the
potential U(r), is uniquely minimized by the equilibrium bulk direct correlation functions of the Percus-YevigkY)

one-particle density(r) = po(r). Furthermore, with3F[p] equation[9,10]. From this functional, thermodynamic and

— = L structural properties of the uniform fluid can be derived.
;BF[p]+IQrp(r)Bq(r), Flp] (the intrinsic free energy Among several hard-core systerfezen nonspherical ones,
is a generating functional for the direct correlation function

25 such as cube$l11,12), there is only one ‘“soft” system
c(r.r’), where the framework has been appl[ad].
The other strategy ismainly) due to Percus, who has
523E Sr—r") followed this route now for more than 20 years; contribu-
—= —c@(r,r). (1)  tions due to other authors in this direction are quotefbin
dp(rop(r’) ) Essentially, it consists in the development of mathematical
models of the free energy of a nonuniform fljit4,5] with
Of course, in thauniform limit[i.e., p(r)— p] the properties the bulk direct correlation functions as the only specific in-
of the corresponding uniform system have to be recoveredput, whereas the general structure of the free energy ansatz
Practical applications require the explicit form of the cor- (called the formatis taken from(mostly) one-dimensional
responding energy functional. However, this information isexactly solved model systeni§,15—-17%. The hope behind
accessible only in very rare cas@sost of them being one- this approach is that these “exactly solvable model systems
dimensional systemisone therefore has to resort to approxi- ... might serve as guideq15] for more complex, realistic
mate schemes. Again, it is not possible to present a completystems. The mathematical model we are going to define
list of approximate approaches that have been proposed imelow and illustrate for a system with attractive potentials
the literature; we therefore refer the readefith Despite the was proposed ih14,5]. As in the FMT this approach is a
success of these approaches in a wide range of applicationsgighted-density type DFT: the density profiene-particle
considerable effort is nonetheless devoted to gaining newlensityp(r)] is smoothed via a convolution with an appro-
insight into thegeneral structure of density functionals via priate set of weightbasig functions. These weight functions
exactly or semianalytically solvable systems. Two of theseéhave— as in the FMT framework—a range of half the range
concepts are pointed out in particular: the fundamental measf the interaction.
sure theory(FMT; proposed by Rosenfeld i#] and elabo- In this contribution we first of all show that for simple
rated in many subsequent artidlesxd an approach followed hard spheres we can reproduce Rosenfeld’s original FMT set
for a long time by Percus and other auth¢fr an overview of basis functions(which—as in the Percus approach—
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represent®nly onepossible set of functionsand the corre- and the vector components with

sponding energy densitys]. We then proceed to the most

simple(and convenientextension of hard spheres by includ-

ing some attraction, leading us to adhesive hard spheres, a J drb .(r)=0. (5)
system introduced by Baxt¢d8]. Here, the direct correla-

tion functions are known analytically for both the PY equa-

tion and the mean spherical mod&SM). We are able to We will now construct the generating functional in a
present a set of basis functiowhich we obtain from a three-step procedure. The first step is the determination of
decomposition of the direct correlation function in the the basis functions. This is most readily done via the bilinear
MSM): with respect to the hard sphere case, additional basigecomposition of the Boltzmann facte(r) = exg — B¥(r)]
functions have to be included. Further, it is indeed[whereW(r) is the interaction potentihl This step is moti-
possible—due to a simple density dependence of the corrgmted by the fact tha(r) represents the low-density limit of
lation functions—to write down a closed expreSSion for thethe free energy. One should also point out that this Step is
energy density. We have also tried to generalize these resulifged in the FMT to fix the basis functiopd].

to theN-component case: this step fails due to a violation of |y the second step the direct correlation function is ob-

the integrability condition of the compressibility relation, tained from the functionaF|[ p] via a double functional de-

i.e., some inconsistency of the MSM. - : : o
The paper is organized as follows. In the next section w fivative using £q(1). Using Eqs.(2) and(3) we find in the

present the mathematical model of the density functional an niform limit

in Sec. Il the decomposition of the direct correlation func-

tions in terms of the basis functions and the reconstruction of —c@(rr"y=—=c@(r—r'|)

the density functional for the two model interactions men-

tioned above. We then discuss in Sec. IV how this math- :2 Jdr”b (r"=r)b(r"—r")
ematical model of a generating functional can be solved for aB “ p

those systems where analytic solutions of the structure func- @ 5
tions are no longer available. The paper is closed with con- X® o (1PN o =p (6)
cluding remarks.

which in Fourier spacda caret denotes the Fourier trans-

Il. THE FORMAT form) reads
We start from the gfneral ansdfarmat for the intrinsic
free energy functiona{p] [14.9 —ea) =2 b @by @Pas{PDlor=- (D)
BF[pl=BF[p]+ J drup(r)p(r), Here we require knowledge of the direct correlation function

and we have to verify that the basis functions chosen in the
first step are indeed able to decompose the direct correlation
functions forany density. There are a few model systems
Erol= | dro(Hino(r)—1 +J drd N, where this function can be determ_med anglynca(ﬂyhmh _
AFLr] f p(Nlinp(r)—1] (tpah(n) does not guarantee that the generating functional can be writ-
(2)  ten down in a closed analytic expressiom this contribu-

) ) ) ) tion we restrict ourselves to two such analytically solvable
whergp(r) is the nonuniform one-particle density, apd the systems: hard spheréBiSs; in the PY equationand their
density dependence of the excess free energy dedsitg-  mathematically simplest extension, adhesive hard spheres
curs locally via the nonlocal,(r), « being from a finite set  (AHSs: in the mean spherical moglein the general case the
of indices[5]; the p,(r) are given by correlation functions have to be determined via one of the

accurate liquid state theorig$9,20 known in the literature.
, , , . (2) ’ . . .
pa(r)If dr' b (r—r")p(t")=[b,®p](r), (3 The decomposition of)(r,r’) in terms of the basis func
tions yields the coefficient®, ;, i.e., the partial derivatives
, . of ® with respect top, andpg.
and the basis functionb,(r) have half the range of the |, the third step® and the generating function&l[ p]
interaction[5,14—17. The basic physical restriction for this e finally obtained via a double integration with respect to
format is that the local structure of the DF is valid only for {ha pulk density(and by including some further, nontrivial
short-range interactions; this restriction stems from result$scpnical assumptionsThe argument dependence ®f on
obtained for exactly solvable one-dimensional systéras 1, 1 fixes the local character of this function for any density

striction to nearest-neighbor interaction$5-17,5. (uniform or nonuniforn.
~ Following Percus we distinguish two types of basis func- ¢ coyrse, the free energy of the uniform system,is
tions{b,}={b, ,b,s}: the scalars, where reproduced whep(r)=p, i.e.,

J drb,(r)=1 (4) BF[p(r)1|,=BF. ®
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lll. THE SYSTEMS _Ci(jz)(r):X(B)Avij(r)+X(2)Asij(r)+X(l)ARij(r)

A. Hard spheres +X(O)®(dij —1). (9)

The simplest model system in three dimensions that can
be treated analytically is aN-component mixture of HSs, This formulation was proposed by Rosenféii 4] and is a
characterized by diameteth;=d;, a set of concentratlons geometric interpretation of the direct correlation function:
ci, and a packing fractiom=(w/6)p=;cid?, i=1,... N; AV;;(r) andAS;(r) are the overlap volume and the overlap
the p;j=pc; are the partial densities. Furthed,u 3(di  surface of two spheres separated by a distanasdAR;;(r)
+dj), s= 2(di— d;), and we assume tha;;,>0 For the is the mean radius of the spherocoré(r) is the usual
PY equatlor(or MSM) closed analytic expressions are avail- Heaviside step function. For completeness the explicit ex-

able for the direct correlation functio{(r)=c{)(|[r"  pressions for the function&V;;(r), AS;(r), and AR;(r)
—r"|) [9,10]: are given:
wd?
TI’ re(0s;)
AVij(r)== m 3(d12_d|2)2+ d?—i_d? 3(d12+d|2) 24 1 4 re[su d] (10)
o 37 5 r 2 r 2I’ s ji 1 Yij
O: Iﬁe(dij :OO)!
wd?, re(0s;j)
T di+d (di—d\? di\? [di\? d;+d;
A&j(r):: Ti_% % +2 EI + Ej }I’ Tj 2], re[Sji -dij] (11)
0, re(dljv ),
d.
5" rE(O,Sji)
AR;(r):=¢ 1[ 1[/di—d;\* di+d; 1 (12
] F[ 7l +fr—zr2 , rels;,di]
O, rE(dij ,OO)_

The three-step procedure outlined in the preceding section N N
can now be applied: decomposition of the Boltzmann factor aa,(r)=2 (a(a,')®pi)(r), a'=0,...,3,
leads to a set of ba3|s funct|0(1$1e (r( ) are henceforward =1

the scalar, while the' e, ) are the vector basis functions
To(1)= Z (7Vop)(r), a'=12, (15)
. d; . ,
agd'm:(—'—r), (N =Vay(n), o _
2 we can extract the partial derivativds, ;. @ is then deter-
mined via integration ofP, 5 (up to integration constants

a(zd‘)(r)=|r(2d‘)(r)| (13) and is found to bésee alsd4,5])
and 01027 71" 72
Cpah) =~ ooln(1=0g) = "—
1 1
(d)(py= = ) @) ()= = () 1
0= gmaz® (" " g (7 (1/3’7)"2(5"3‘72'72)
(16)
1 (1_0'3)2
o (r)= a2 a(r). (14)

The basis functions in Eq§13) and(14) are exactly those
that were proposed by Rosenfdld] in his geometrically
Defining the se{p,(r)}={c,/(r), 7. (1)}, motivated decomposition of the direct correlation function.
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However, it should be pointed out that Rosenfeld’s approact further equivalent set of functions has been proposed by
is from the conceptual point of view completely different Kierlik and Rosinberg[23]: there, the basis functions are
from the present one: Rosenfeld starts from the decompospurely scalar oneg&his possibility was already predicted by
tion of the Boltzmann factor and determines the functionalPercus[14,5]), but contain, on the other hand, higher-order
based on a differential equation, originally proposed for aderivatives of thed function. The equivalence of the two
uniform mixture of hard spheres [22]; however, the exten- parametrizations has been shown explicitly 24].

sion to systems with attractive tails is impossible. The direct
correlation functions that come out of the formalism are ex-
actly those that are obtained from the PY equation for a
mixture of HSs[9]. This idea has lead to the very fruitful The most simple extension of HSs is to add an attractive
concept of fundamental measure theory which has been apotential to the hard core. This can be done most conve-
plied in many fields of liquid state physi¢fr an overview niently in terms of an adhesive potential, introduced by Bax-
see, for example]7,8]). As, for instance, discussed [B] ter[18]as a special limiting case of a square-well system; we
several equivalent sets of basis functions are possible solwonsider arN-component mixture of AHSSs, their interaction
tions to the decomposition of the direct correlation functionsbeing given by

B. Adhesive hard spheres

o0, re[O,dij)

BYi(r)=Ilim (17)

m —@(r—dij)ln(%Jd”>®(d”+e r), reld;,=).

We use the same symbols as in the HS case. The paramgtessaracterize the stickiness of the spheres. The Ornstein-
Zernike (O2) equations, which relate the dirdat{”(r)] and the tota[ h{?)(r)] correlation functions, are most conveniently
solved by a Wiener-HopfWertheim- Baxte)factonzauon procedurg25s, 1(] The factor functionsj;;(r) that are introduced in
this framework are related to thg”(r) via

N
_qifj(r)+2wk§=‘,l pkfo qki(t)qﬁj(rﬂ)dt, re(0dj]

0, re(dij,w).

reP(r)= (18)

One finds for they;;(r) [26] 1
: =2 i §1=Z P|(d|/2):§2| pid,

1
(1) = O(r = ;)| 5 (r?=df) +by(r —dyj) + N df L= 2 pl4m(di2)?]=72 pdf,
X@(dij_r) (19)

§3=2| p|[(4w/3)(d|/2)3]=(77/6)2| pd’. (22

with yet undetermined\;; and the following parameters

(summations run here and in the following from 1Ng: _ _ _
The (factorized OZ equations have to be solved along with

a closure relation. In the PY case we obtain a set of coupled
guadratic equations that has to be solved numeri¢ay.

1-12X; dié»

aj= , = (dja; +2by),
L l-4 2(1-¢9)? 174 (a2
(20 Nijdij= i aidij+bi+2772k .Dk)\kjdijqik(sik) . (23
X =— r.d, a2 21 The \;; are explicitly density dependent; for this reason—as
6 2 pludh ~ Vit @D will be explained later—we discard in this contribution the
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PY solution. The MSM, on the other hand, leads to the very For the decomposition of the direct correlation functions
simple and density-independent soluti@Y] we use again thaVj;(r), AS;(r), andAR;;(r) introduced
in Sec. llIA. Using Egs.(18)—(22) we find the following
expressions for the direct correlation functiofsee also
Nij = ij - (24 [28]):

1
—efN=AVi(N 2 piakt5A81(N 2 prandhedict 200+ mAR; (1) 25 pyl dhea+ 250

1
+l_—§3®(dij_r)_7ijdij5(r_dij)
12X
_1_—|_2772 pralid re(0s;),
{3
6X,+6X; 65;(X—X;) 1

+ —+ i+
1_§3 1 §3 r 772 pkak(rkl l_‘k])r

1 (29
—W% Pkak(rkidi+rkjdj)+772k pkakdijsij(rki_rkj)r

1
+27T; Pkairkij rels;,djl,

0, rE(dij ,OO).

As in the HS case, the{?(r) of AHSs of the PY equa- § o
tions and of the MSM are limited to the range of the inter- (r)= (r),
action: forr e[0,d;; ] we recover typical hard core terms, i.e.,
terms such as those that build up the HS direct correlation
functions. In addition, we encounter terms that are caused by @) 1
the adhesiveness of the interaction and have to be decom- o; "(r)=——
posed into convolutions deventually new basis functions:
those terms are proportional to 1/r, and 8(r —d).

Again, we execute the three-step procedure outlined 1
above. The decomposition of the Boltzmann factor leads to a () )=~ (),
new set of basis functions: indeed, the set of basis functions  ° 4ar(di/2)? 72
used for HSs is no longer sufficient. By introducilﬁédi)(r),

(d‘)(r) and r(d‘)(r) we extend the set of basis functions
(o (d) (d)

1
A0(r).

o2 0 n 0= g g5
1

47d;/2 72

(27)

We can now proceed to the decomposition of the direct
.} used for HSs to the following set: correlation functiong6); this task is most readily done in

Fourier space. Introducing the Fourier transforms of the basis
functions, i.e.,f[o(d)](q) o(d)(q), etc., we find the fol-

d; lowing bilinear decompositions of ttredependent terms that
crgd‘)(r)=®(§ - r), r(zd‘)(r)= Vo(gd‘)(r), build up the direct correlation function according to E2f):

FIAV W@ =0 (q)aiP (),

o (=150, 77 (=5 Vs (), o o
' FIAS; I @) =0 (q) ol (q)+ ol (q) o (q),
s (=175, 26 FIAR; (@) =)' (q)+ 0P (q)0@(q)

1 ~(d:
and +a-lasV (@l (@) + BV (a)- B ()],
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o RN COPSREN ) ~ (di) ey () 1 N
‘7:[®(dlj r)](Q) O3 (Q)O'o (Q)+00 (Q)Ug (UI) F @(r_sji)FG)(dij_r) (Q):SWUg_dI)(Q)O'g_dJ)(Q).
~ (di) 4y 2 (dj) ~ (di) ¢ 4y ~(dj)
+o;" (q)+o.,! I
o1 (@ (@) F () ey T(a) Now the coefficientsb,, 5({p}) are determined from Egs.
+T(1di)(q),T(Zdj)(q)JrT(zdi)(q),T(ld,-)(q)' (25) gnd (2_8). The decomposmor.l of the dlre_ct qorrelatlon
functions fixes via Eq(6) the @, ;; the determination ofP
(28)  can now be done via integration df, 5. This integration
can be performed in a completely analytic way for the MSM,
(), o~ (d) (0, ~(d) where the coefficients;; are density independent. The situ-
FLo(r=dip1(@)=8may " (Q) o, () + " (d) oy () ation is somewhat more complicated for the PY equation:
here the\;; are density dependent add can only be deter-

~ di ~(d: ~ di ~(d; ! . . . . .
+¢T(2 )(Q)llfé ‘)(Q)Jfff) )(GI)-T(Z (q) mined via a numerical double integration. Since the present
~(d) ~(d) contribution seeks only to demonstrate the possibility of the
+7,°(q) 7 (), extension of Percus’ idea to systems beyond simple HSs we

restrict ourselves to the MSM case.
We start with discussion of the one-component cdse (

]—'[@(r—sji)r®(dij—r)](q)=G[w(sdi)(q)a(ldj)(q) =1). We are looking ford that reproduces in the uniform
(), () case the MSM expression for the direct correlation function.
+o, Q) ()] Separation of variablegsas in the exactly solvable one-
dimensional caseld5,16,5,17) yields ® uniquelyup to in-
1 tegration constants which are determined via a lowest-order

dp) ~(d;)
+— | . J
2 (@)-77(a), expansion of the free energ29]. ® is then given by

1
(1/877)02(50'%—72-72 d d

102— 71" T
T 502570 T
2',00 27570 T2

1=03 (1-03)?

0'1( 47 -0

D({pa}) = — oon(1- o)+ >

’7Td3 2
2 | _ _
+24y 0'0( oo ) 12v(0109— 71 7)

7348 1+3 +In[1 L3
6 1-o, Yoo ( ¥)(o3+In[1—o3]) 570'3

. (29

The first line is again the expression for the pure HS contriequivalent to the direct solution of the OZ equations only
bution [cf. Egs.(15) and (16) with N=1]; the other contri- under certain conditions, which have, for instance, been dis-
butions take into account the stickiness. It is straightforwarccussed i{10,30. Second, these conditions lead in the one-
(but tedious to show that® indeed reproduces the direct component case to the restriction that the MSM for AHSs
correlation functions and the free energy. has no solution for all densities foy>y,=(\3+2)/6

Of course, it is possible to proceed in a similar way with ~0.622[31].
the PY solution of the direct correlation function. Now the
coefficients of the bilinear decomposition of?(r), the IV. EXTENSIONS AND APPLICATIONS
d(dP/dpg)dp,, are density dependent; hendehas to be

determined via a double integration with respect to the bulk , W€ start this section with an outlook on the applicabilit

. of this method to other, perhaps more realistic, and complex
density. . :
systems. We are quite sure—although we cannot prove this

The generalization of this procedure to tNecomponent rigorously—that there is no further three-dimensional system
case can certainly not be done in the MSM of AHSs. This i . X .
here the density functional can be constructed fully analyti-

due to an inconsistency .Of the MSM for AHQEh'Ch ob_w- cally following the framework we have used in this contri-
ously has not been realized up to nowhe partial deriva- bution.
tives of the pressur® with respect to the densitigs, i.e.,  However, this should not discourage us from the applica-
B(P)/(dpi), which can be calculated directly from the di- tjon of Percus’ ideas. We therefore outline a possible appli-
rect correlation functiong9], do not represent a gradient cation to more realistic systems that we intend to elaborate in
field, i.e., the equation of state obtained by integration of thighe near future. The basis for our optimism is the fact that the
quantity is path dependent. direct correlation functions of any ‘“simple” liquid can
To conclude, two notes have to be made. First, the solunowadays be determined with arbitrary accuracy using mod-
tion of the OZ equations via the Baxter factorization route isern concepts of liquid state theorisee, for instance,
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[19,20). Again, we proceed in the three-step sequence out- Density functionals are not used only to describe proper-
lined in the preceding section. First, we determine the set ofies of nonuniform systems. A third functional derivative of
basis functiongb, ,b,}: the fact that for hard core inter- the free energy with respect to densignd taking the limit
actions these functions are by now well establisfiath via ~ ©f @ uniform density gives, 3for instance, the three-particle
Rosenfeld’s FMT approach as well as by Percus’ cor)ceptd'reCt correlation functiorc® [1]. This fact was, for in-

suggests that we concentrate on such systems. The additior?zst?nce' one of the first applications of Rosenfeld's FMT den-

; . . . sity functional proposed for HSs and led to quite a satisfac-
repulsive (or attractive tail should then be restricted to tory result in comparison with computer simulation data

simple analytical formgsuch as square wells, square shoul—[32,3a_ The fact that we have constructed a density func-
ders, or related systemsvhere the decomposition of the tional for AHSs allows us to present an expression for the
Boltzmann factor in terms of additional basis functions isthree-particle direct correlation functions for such a system.
still within reach. Second, we make a bilinear decompositiorThe threefold functional derivative of the functional and the
of the direct correlation functions and determine thus theuniform limit can be transformed to threefold partial deriva-
matrix of coefficients)(d®/dpg)dp, . Finally, third, we cal- tives of the energy densitp, and this leads to the following
culate® via a double integration with respect to density. result for the correlation functions i spacec®(q;,q,):

1+48y(1+6yi3—3vL3) . . . . 1-12y
R G )+ s
(1-¢5) (1-¢9)

(PG40 5 00+ 2 0500500,

(1-£3)
345 | 20(1-12y)
Am(1-03)* (1-s)°
£ 8Lb(1-12y) 241+48)(1+3y)]
m(1—¢3)° (1-¢3)* (1-¢3)°

&0y @)= Ay ) )+ (6050

A AN )+

L G50 S ) ()
X(ql,q2)+2ﬂ-(l—§3)3{(02 oy 1 7)oy Hd1,02) F

><{&9>&gd>agd>}<ql,qz>+(

 288y(1+12y45-67¢3)
7d¥(1-¢5)?

) {0V} (ay,00), (30)

where we have used the following shorthand notation for permutations
1010203} (X1,X2) = 01(X1) 02(X2) 03( = X1— Xp) + 01(— X1 = X2) 02(X1) 03(X2) + 01(X2) 02( — X1 = Xp) 03(Xy)

T 01(—X1=X2) 02(Xp) 03(Xq) + T1(X1) 02— X1 = X2) 03(X2) + T1(Xp) 02(X1) 03(— X1 —Xp).  (31)

V. CONCLUSIONS the case of simple hard spheres. The basic relations of clas-

. o . . sical density functional theory allow us to write down a
Based on investigations of one-dimensional, exactly solv-

able problems that were performed during recent decadedose.d expression for the thr_ee-particle _direct correlat_ion
Percus and co-workers have proposed a general mathemaﬁu-ncuon' We conclude by giving an outline of how this

. . athematical model can be solved for more realistic sys-
cal model of density functionals that may be solved from

4 . X ) tems.

knowledge of the uniform direct correlation functions of the
system considered. To demonstrate its applicability for sys-
tems other than hard spheres we have treated the mean
spherical model for adhesive hard spheres. We have shown ACKNOWLEDGMENT"S
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